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Abstract

A new technique using neural networks to efficiently design

microstrip circuits is presented. In our proposed method,

a full-wave analysis is employed to rigorously characterize a

microst rip circuit, which results in a finite set of pairs of in-

put and output parameter vectors. The neurons, arranged as

a three-layer network, are used to learn the mappings from

input to output and then give accurate approximations for

the output vectors at any arbitrary input. It is emphasized

that a three-layer neural network is capable of performing

any mapping if the right connections among the neurons can

be made. A real example on the microstrip corporate feed

design is given to illustrate the potential power of this tech-

nique.

1. Introduction

Neural networks have recently drawn significant at-

tention as powerful tools in artificial intelligence (AI) re-

search [1]- [4]. Their structural and behavioral resemblance

to systems of biological neurons has also proved useful in a

wide variety of engineering applications [5], [6]. In this paper,

we wish to be the first to exploit the advantages using neural

net works for microst rip circuit designs. In the past, several

full-wave numerical methods including the space-domain and

spectral-domain EFIE [7]- [12], MPIE [13] ,[14] and FDTD

[15],[16] have been employed to effectively investigate var-

ious microstrip components and simple circuits. However,

each method takes tremendous computation efforts which

still can not make a practical circuit design feasible within a

reasonable period of time. Therefore, an extensive literature

was devoted to approximating an unknown mapping related

to a circuit performance, in between or beyond the limited

sampling points, by the curve-fitting techniques. This allows

us to quickly calculate the output values at any arbitrary in-

put points. In the curve-fitting techniques, the specific form

of a function to be fitted to data is first chosen and then fit-

ting according to some error criterion (such as the least mean

of squared errors) is carried out. The functional form should

be sufficiently general so as to approximate large classes of

mappings which rnlght arise in practice. The commonly used

fitting functions include polynomials, rational functions and

trigonometric functions.

A primary advantage of neural networks over the curve-

fitting techniques is that the neural networks have more gen-

eral functional forms. Kolmogorov’s Mapping Neural Net-

work Existence Theorem further proves that a three-layer

neural network can exactly implement any continuous map-

ping [3]. This result gives hope that, with the proper con-

nections among neurons, the network is itself able to ap-

proximate any mapping of practical interest to any desired

degree of accuracy. Another advantage is neurocomputing’s

parallel distributed processing (PDP) ability to construct an

unknown mapping from the tabulated output values at ran-

dom input points [4]. The PDP models assume that infor-

mation processing takes place through the interactions of a

large number of simple processing neurons, each sending ex-

citatory and inhibitory signals to other neurons in the learn-

ing procedure. This corresponds to a numerical recursive

procedure for computing the weight changes of connectivity

between any two neurons. Finally, a mapping can be in gen-

eral represented by several weight matrices that constitute

the pat tern of connectivity from input to output.

In summary, many examples have been gathered to

show that the function approximations using neural networks

are usually better than those provided by the curve-fitting

techniques which often exhibit some unwanted artifacts such

as excessive polynomial-type humps or Fourier series-type

overshoots and ringing. This difference is particularly ev-

ident in high-dimensional spaces (input dimensions greater

than 3) [3].

II. Design of a Microstrip Corporate Feed

E
A design example for a microstrip corporate feed is

given. The aim of the design is to ingeniously shape each

junction in the corporate feed to acquire a tapered and in

phase output current distribution from which a Dolph-Cheby-

shev array sum pattern may be synthesized. Fig. 1 shows a

symmetric microstrip corporate feed with five output branch
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Figure 1: A prototype of microstrip corporate feed with five

branch lines in the output ports.

lines. This corporate feed is embedded in the middle of a

duroid substrate with permittivity equal to 2.33 and thick-

ness equal to 62 roil. The operating frequency is 8.5 GHz.

The microstriplines in the input ports, output ports, and

between any two junctions are 50 Q transmission lines. The

corresponding width of microstriplines is equal to 80 mil and

a guided wavelength is equal to 935 roil. In this corPo-

rate feed, we proposed five adjustable distance parameters

dn, n = 1,...,5, to meet the requirement for the specified

array performance. From array theory, we know that the

array sum patterns can be determined by two output cur-

rent ratios ~ and 12. These two ratios are complex values
~ Is

which include two r%agnitudes (denoted by tl and tz) and

two phases (denoted by t3 and tl). We can define a mapping

F: R5+R4by

F(dl, d2, d3, dl,ds) = (tl, t2, t3, t4). (1)

Our goal is to find a representation for this mapping using

neural networks.

III. Full-Wave Junction Analysis

The first step to reach the goal is to establish a set

of samples from which the neural networks may learn how

output will respond to input. In this paper, we characterize

each junction in the corporate feed by the scattering pa-

ramet ers at discrete values of certain dist ante parameters.

Network theory is then applied to integrate all the junc-

tions’ scattering matrices and compute the output current

distribution. The approach to find the scattering parame-

ters is governed by the spectral-domain EFIE [10] -[12]. As

an example, Fig. 2(a) shows the geometry of a shaped cross

junction which is the first junction to divide the input cur-

rents. In the moment method procedure, the electric sur-

face currents on the microstrips are effectively expanded by

a combination of the rectangular subdomain functions and

the semi-infinite traveling wave functions. The use of this

expansion mechanism is also illustrated in Fig. 2(a) where

each pair of adj scent rectangles represents a rectangular sub-

domain function. The dashed lines in the figure locate the

reference planes. The semi-infinite traveling wave functions

extend from these reference planes to expand in part the

currents along the microstriplines. It is noted that we can

easily lengthen or shorten the distance dl by adding or re-

moving some rectangles without changing the entire numer-

ical scheme for the characterization of this junction. As a

result, magnitudes and phases of the scattering parameters

at uniformly sampled values of dl are shown by the dark

circles in Fig, 2(b) and Fig. 2(c) respectively.

IV. Framework of the Neural Network

Fig. 3 shows a three-layer neural network. The pat-

terns of connectivity among the neurons are represented by

two weight matrices, [zu~J and [w&]. The weight is a positive

number for exciting the connected neuron, and a negative

number for inhibiting the connected neuron. Its absolute

value specifies the strength of the connection. For the neu-

rons in the last two layers, a continuous, nonlinear activation

function is needed to bound the output signal and make sure

that the network can effectively learn to approach a maP-

ping. Here we choose a commonly used activation function

in biological experiments as

x ‘a’ = f(z’~) = ~ + :_r,.. (2)

The learning procedure first uses the input vector to produce

its own output vector and then compares this with the de-

sired output. If there is no difference, no learning takes place.

Otherwise the weights are changed to reduce the difference.

It is noted that the desired output needs to be normalized

within the range [0 : I] due to the use of the activation func-

tion in (2). The scheme for updating the weights is to achieve

the minimization of the cost function defined as

(3)

where tpkand O$t are the kth element of the desired output

and observed output respectively by the presentation of the

pth input sample. The amount of the weight change is pro-

portional to the derivative of the cost function with respect
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Figure 2: (a) The junction geometry. (b) Magnitude and (c)

Phase of the S parameters

where

~~k = (tPk – o$’)~’(o$). (6)

Eqs. (4)-(6) give a recursive procedure for computing the

weight changes in the network according to a back-propagation

scheme [4].

V. Simulation Results ~

For any given sampling space, the learning procedure

will eventually lead to a solution. However, the accuracy of

the solution depends on what samples we choose and how

many samples we have. Fig. 4 shows a comparison of using

different size of sampling space in the corporate feed prob-

lem. The case presented here was never chosen as a sample

to train any network such that we might use it to test how

close the networks approach the mapping. In Fig. 4, the

solid line represents the array pattern calculated from the

output currents based on a full-wave numerical result, while

the other three curves are simulation results using neural

networks with the number of training samples equal to 432,

1024 and 2400 respectively. It can be seen that the simula-

tion results using neural networks can approach a full-wave

result better as the number of samples increases. Finally,

we used the well trained neural network to find the distance

parameters associated with the 20dB, 25dB and 30dB Dolph-

Chebyshev array patterns. The values of parameters and the

patterns are shown in Table 1 and Fig. 5 respectively.
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Figure 4: Simulation of the array patterns for the case of

the corporate feed with the following distance parameters:

dl=60mil, dz=40mil, d3=120mil, d4=60mil. d~=120mil.

Tablel: Simulation results of thedistance parameters forthe

20dB, 25dB and 30dB Dolph-Chebyshev array sum patterns.
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Figure 5: Simulation of the 20dB, 25dB, and 30dB Dolph-

Chebysehv array sum patterns.
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