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Abstract

A new technique using neural networks to efficiently design
microstrip circuits is presented. In our proposed method,
a full-wave analysis is employed to rigorously characterize a
microstrip circuit, which results in a finite set of pairs of in-
put and output parameter vectors. The neurons, arranged as
a three-layer network, are used to learn the mappings from
input to output and then give accurate approximations for
the output vectors at any arbitrary input. It is emphasized
that a three-layer neural network is capable of performing
any mapping if the right connections among the neurons can
be made. A real example on the microstrip corporate feed
design is given to illustrate the potential power of this tech-
nique.

I. Introduction

Neural networks have recently drawn significant at-
tention as powerful tools in artificial intelligence (Al) re-
search [1]-[4]. Their structural and behavioral resemblance
to systems of biological neurons has also proved useful in a
wide variety of engineering applications [5],[6]. In this paper,
we wish to be the first to exploit the advantages using neural
networks for microstrip circuit designs. In the past, several
full-wave numerical methods including the space-domain and
spectral-domain EFIE [7]-[12], MPIE [13},[14] and FDTD
[15],[16] have been employed to effectively investigate var-
jous microstrip components and simple circuits. However,
each method takes tremendous computation efforts which
still can not make a practical circuit design feasible within a
reasonable period of time. Therefore, an extensive literature
was devoted to approximating an unknown mapping related
to a circuit performance, in between or beyond the limited
sampling points, by the curve-fitting techniques. This allows
us to quickly calculate the output values at any arbitrary in-
put points. In the curve-fitting techniques, the specific form
of a function to be fitted to data is first chosen and then fit-
ting according to some error criterion (such as the least mean
of squared errors) is carried out. The functional form should
be sufficiently general so as to approximate large classes of
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mappings which Iﬁight arise in practice. The commonly used
fitting functions include polynomials, rational functions and
trigonometric functions.

A primary advantage of neural networks over the curve-
fitting techniques is that the neural networks have more gen-
eral functional forms. Kolmogorov’s Mapping Neural Net-
work Existence Theorem further proves that a three-layer
neural network can exactly implement any continuous map-
ping [3]. This result gives hope that, with the proper con-
nections among neurons, the network is itself able to ap-
proximate any mapping of practical interest to any desired
degree of accuracy. Another advantage is neurocomputing’s
parallel distributed processing (PDP) ability to construct an
unknown mapping from the tabulated output values at ran-
dom input points [4]. The PDP models assume that infor-
mation processing takes place through the interactions of a
large number of simple processing neurons, each sending ex-
citatory and inhibitory signals to other neurons in the learn-
ing procedure. This corresponds to a numerical recursive
procedure for computing the weight changes of connectivity
between any two neurons. Finally, a mapping can be in gen-
eral represented by several weight matrices that constitute
the pattern of connectivity from input to output.

In summary, many examples have been gathered to
show that the function approximations using neural networks
are usually better than those provided by the curve-fitting
techniques which often exhibit some unwanted artifacts such
as excessive polynomial-type humps or Fourier series-type
overshoots and ringing. This difference is particularly ev-
ident in high-dimensional spaces (input dimensions greater

than 3) [3].
II. Design of a Microstrip Corporate Feed

A design example for a microstrip corporate feed is
given. The aim of the design is to ingeniously shape each
junction in the corporate feed to acquire a tapered and in
phase output current distribution from which a Dolph-Cheby-
shev array sum pattern may be synthesized. Fig. 1 shows a
symmetric microstrip corporate feed with five output branch
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Figure 1: A prototype of microstrip corporate feed with five
branch lines in the output ports.

lines. This corporate feed is embedded in the middle of a
duroid substrate with permittivity equal to 2.33 and thick-
ness equal to 62 mil. The operating frequency is 8.5 GHz.
The microstriplines in the input ports, output ports, and
between any two junctions are 50 Q transmission lines. The
corresponding width of microstriplines is equal to 80 mil and
a guided wavelength is equal to 935 mil. In this corpo-
rate feed, we proposed five adjustable distance parameters
dnyn = 1,---,5, to meet the requirement for the specified
array performance. From array theory, we know that the
array sum patterns can be determined by two output cur-
rent ratios, -g- and —Z— These two ratios are complex values
which include two magnitudes (denoted by ¢; and ¢;) and
two phases (denoted by t3 and t4). We can define a mapping
F:Rs— Ryby

F(d17d2, d37d47d5) = (t17t27t37t4)~ (]-)

Our goal is to find a representation for this mapping using
neural networks.

III. Full-Wave Junction Analysis

The first step to reach the goal is to establish a set
of samples from which the neural networks may learn how
output will respond to input. In this paper, we characterize
each junction in the corporate feed by the scattering pa-
rameters at discrete values of certain distance parameters.
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Network theory is then applied to integrate all the junc-
tions’ scattering matrices and compute the output current
distribution. The approach to find the scattering parame-
ters is governed by the spectral-domain EFIE [10]-[12]. As
an example, Fig. 2(a) shows the geometry of a shaped cross
junction which is the first junction to divide the input cur-
rents. In the moment method procedure, the electric sur-
face currents on the microstrips are effectively expanded by
a combination of the rectangular subdomain functions and
the semi-infinite traveling wave functions. The use of this
expansion mechanism is also illustrated in Fig. 2(a) where
each pair of adjacent rectangles represents a rectangular sub-
domain function. The dashed lines in the figure locate the
reference planes. The semi-infinite traveling wave functions
extend from these reference planes to expand in part the
currents along the microstriplines. It is noted that we can
easily lengthen or shorten the distance d; by adding or re-
moving some rectangles without changing the entire numer-
ical scheme for the characterization of this junction. As a
result, magnitudes and phases of the scattering parameters
at uniformly sampled values of d; are shown by the dark
circles in Fig. 2(b) and Fig. 2(c) respectively.

IV. Framework of the Neural Network

Fig. 3 shows a three-layer neural network. The pat-
terns of connectivity among the neurons are represented by
two weight matrices, [w] and [w};]. The weight is a positive
number for exciting the connected neuron, and a negative
number for inhibiting the connected neuron. Its absolute
value specifies the strength of the connection. For the neu-
rons in the last two layers, a continuous, nonlinear activation
function is needed to bound the output signal and make sure
that the network can effectively learn to approach a map-
ping. Here we choose a commonly used activation function
in biological experiments as

2™ = fla) = —
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The learning procedure first uses the input vector to produce
its own output vector and then compares this with the de-
sired output. If there is no difference, no learning takes place.
Otherwise the weights are changed to reduce the difference.
It is noted that the desired output needs to be normalized
within the range [0 : 1] due to the use of the activation func-
tion in (2). The scheme for updating the weights is to achieve
the minimization of the cost function defined as

1 OU
E = ZE = -2- ZZ(tpk — Opkt)Q, (3)
Pk
where 5. and of%! are the kth element of the desired output
and observed output respectively by the presentation of the

pth input sample. The amount of the weight change is pro-
portional to the derivative of the cost function with respect



#3
fe—— 80Omil ——f

d, -t

T
20mil

#

i B 8 el

20mil

Reference Plane

Ha

07s

0.7

0.65

e
S
1

Magnitude
&
1

05
045
0.4
03s L E— T 7 T T T T (b)
[ 0 40 60 © 80 100 120 140 160 180
d ; (mil
| (mil)
200
0 -\\\—*————/’/
160 - L5
140 -
120
160 _‘h\’\-.%_‘
©
O 80 L53
& 60
[a]
40
2
E 20 - s
£, LSn
LSy
20~ L3
-40 LS5
e
80 -
-100 —\_’"— [
-120 T T ] T T T T T (C)
0 20 40 60 80 100 120 140 160 180
d 1 (mil)

Figure 2: (a) The junction geometry. (b) Magnitude and (c)
Phase of the S parameters
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to each weight. Thus,
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J
where )
Spp = (tpk - OZZt)f (6;:12)' (6)

Eqs. (4)-(6) give a recursive procedure for computing the
weight changes in the network according to a back-propagation
scheme [4].

V. Simulation Results -

For any given sampling space, the learning procedure
will eventually lead to a solution. However, the accuracy of
the solution depends on what samples we choose and how
many samples we have. Fig. 4 shows a comparison of using
different size of sampling space in the corporate feed prob-
lem. The case presented here was never chosen as a sample
to train any network such that we might use it to test how
close the networks approach the mapping. In Fig. 4, the
solid line represents the array pattern calculated from the
output currents based on a full-wave numerical result, while
the other three curves are simulation results using neural
networks with the number of training samples equal to 432,
1024 and 2400 respectively. It can be seen that the simula-
tion results using neural networks can approach a full-wave
result better as the number of samples increases. Finally,
we used the well trained neural network to find the distance
parameters associated with the 20dB, 25dB and 30dB Dolph-
Chebyshev array patterns. The values of parameters and the
patterns are shown in Table 1 and Fig. 5 respectively.
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Figure 4: Simulation of the array patterns for the case of
the corporate feed with the following distance parameters:
d1=60 mil, dy=40 mil, d3=120 mil, d4=60 mil. ds=120 mil.

di | d [ d5 | di [ ds |
20 dB Dolph-Chebyshev Array Pattern
Omil | Omil [ 110mil | 46mil [114mil
25 dB Dolph-Chebyshev Array Pattern
38mil [ 40mil [ Omil [ 76mil [124mil
30 dB Dolph-Chebyshev Array Pattern

142mil | 80mil | 162mil [ 130mil | 120mil

Table 1: Simulation results of the distance parameters for the
20dB, 25dB and 30dB Dolph-Chebyshev array sum patterns.
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Figure 5: Simulation of the 20dB, 25dB, and 30dB Dolph-
Chebysehv array sum patterns.
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